ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
|
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
Даны три треугольника: A1A2A3, B1B2B3, C1C2C3. Известно, что их центры тяжести (точки пересечения медиан) лежат на одной прямой, а никакие три из девяти вершин этих треугольников не лежат на одной прямой. Рассматриваются 27 треугольников вида AiBjCk, где i, j, k независимо пробегают значения 1, 2, 3. Докажите, что эти 27 треугольников можно разбить на две группы так, что сумма площадей треугольников первой группы будет равна сумме площадей треугольников второй группы.
Пусть m, n и k – натуральные числа, причём m > n. Какое из двух чисел больше: или (В каждом выражении k знаков квадратного корня, m и n чередуются.)
Можно ли в таблицу 4×4 расставить такие натуральные числа, что одновременно выполняются следующие условия:
Квадрат 9×9 разбит на 81 единичную клетку. Некоторые клетки закрашены,
причём расстояние между центрами каждых двух закрашенных клеток больше 2.
Дана арифметическая прогрессия (с разностью, отличной от нуля), составленная из натуральных чисел, десятичная запись которых не содержит цифры 9.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|