ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 98133  (#1)

Темы:   [ Задачи на проценты и отношения ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 7,8,9

Первого числа некоторого месяца в магазине было 10 видов товаров по одинаковой цене за штуку. После этого каждый день каждый товар дорожает либо в 2 раза, либо в 3 раза. Первого числа следующего месяца все цены оказались различными. Докажите, что отношение максимальной цены к минимальной больше 27.

Прислать комментарий     Решение

Задача 108057  (#2)

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Перенос стороны, диагонали и т.п. ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

В трапеции ABCD (AD – основание) диагональ AC равна сумме оснований, а угол между диагоналями равен 60°.
Докажите, что трапеция равнобедренная.

Прислать комментарий     Решение

Задача 98125  (#3)

Темы:   [ Перегруппировка площадей ]
[ Упаковки ]
Сложность: 3
Классы: 6,7,8

Автор: Назаров Ф.

У нумизмата Феди все монеты имеют диаметр не больше 10 см. Он хранит их в плоской коробке размером 30×70 см (в один слой). Ему подарили монету диаметром 25 см. Докажите, что все монеты можно уложить в одну плоскую коробку размером 55×55 см.

Прислать комментарий     Решение

Задача 98126  (#4)

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 8,9

Окружность разбита на семь дуг так, что сумма каждых двух соседних дуг не превышает 103°.
Назовите такое наибольшее число A, что при любом таком разбиении каждая из семи дуг содержит не меньше A°.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .