ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 4]      



Задача 98133  (#1)

Темы:   [ Задачи на проценты и отношения ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3
Классы: 7,8,9

Первого числа некоторого месяца в магазине было 10 видов товаров по одинаковой цене за штуку. После этого каждый день каждый товар дорожает либо в 2 раза, либо в 3 раза. Первого числа следующего месяца все цены оказались различными. Докажите, что отношение максимальной цены к минимальной больше 27.

Прислать комментарий     Решение

Задача 108058  (#2)

Темы:   [ Метод координат ]
[ Отношение, в котором биссектриса делит сторону ]
[ Центр масс ]
Сложность: 3+
Классы: 8,9

Стороны треугольника равны 3, 4 и 5. Биссектрисы внешних углов треугольника продолжены до пересечения с продолжениями сторон.
Докажите, что одна из трёх полученных точек есть середина отрезка, соединяющего две другие.

Прислать комментарий     Решение

Задача 108112  (#3)

Темы:   [ Правильные многоугольники ]
[ Вспомогательные проекции ]
Сложность: 4
Классы: 8,9

Из центра O правильного n-угольника A1A2...An проведены n векторов в его вершины. Даны такие числа  a1, a2, ..., an,  что
a1 > a2 > ... > an > 0.  Докажите, что линейная комбинация векторов     отлична от нулевого вектора.

Прислать комментарий     Решение

Задача 98136  (#4)

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 7,8,9

По окружности выписано 10 чисел, их сумма равна 100. Известно, что сумма каждой тройки чисел, стоящих подряд, не меньше 29.
Укажите такое наименьшее число A, что в любом таком наборе чисел каждое из чисел не превышает A.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .