ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Иванов С.

Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число     В таблице зачеркнули n чисел таким образом, что никакие два зачёркнутых числа не находятся в одном столбце или в одной строке. Докажите, что сумма зачёркнутых чисел не меньше 1.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 98131

Темы:   [ Взвешивания ]
[ Отношение порядка ]
[ Метод спуска ]
Сложность: 4
Классы: 8,9

Автор: Анджанс А.

Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?

Прислать комментарий     Решение

Задача 98139

Темы:   [ Числовые таблицы и их свойства ]
[ Полуинварианты ]
[ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
Сложность: 4
Классы: 8,9

Автор: Иванов С.

Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число     В таблице зачеркнули n чисел таким образом, что никакие два зачёркнутых числа не находятся в одном столбце или в одной строке. Докажите, что сумма зачёркнутых чисел не меньше 1.

Прислать комментарий     Решение

Задача 98141

Темы:   [ Взвешивания ]
[ Метод спуска ]
[ Отношение порядка ]
[ Оценка + пример ]
Сложность: 4
Классы: 7,8,9

Автор: Анджанс А.

Имеется 100 серебряных монет, упорядоченных по весу, и 101 золотая монета, они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за наименьшее число взвешиваний найти монету, занимающую среди всех монет 101-е место?

Прислать комментарий     Решение

Задача 108055

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9

Угол при вершине A равнобедренного треугольника ABC  (AB = AC)  равен 20°. На стороне AB отложим отрезок AD, равный BC. Найдите угол BCD.

Прислать комментарий     Решение

Задача 108112

Темы:   [ Правильные многоугольники ]
[ Вспомогательные проекции ]
Сложность: 4
Классы: 8,9

Из центра O правильного n-угольника A1A2...An проведены n векторов в его вершины. Даны такие числа  a1, a2, ..., an,  что
a1 > a2 > ... > an > 0.  Докажите, что линейная комбинация векторов     отлична от нулевого вектора.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .