ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Есть три одинаковых больших сосуда. В одном – 3 л сиропа, в другом – 20 л воды, третий – пустой. Можно выливать из одного сосуда всю жидкость в другой или в раковину. Можно выбрать два сосуда и доливать в один из них из третьего, пока уровни жидкости в выбранных сосудах не сравняются. Как получить 10 л разбавленного 30%-го сиропа? б) То же, но воды – N л. При каких целых N можно получить 10 л разбавленного 30%-го сиропа? Докажите, что из любого выпуклого четырёхугольника можно вырезать три его копии вдвое меньшего размера. Прямоугольник 1×3 будем называть триминошкой. Петя и Вася независимо друг от друга разбивают доску 20×21 на триминошки. Затем они сравнивают полученные разбиения, и Петя платит Васе столько рублей, сколько триминошек в этих двух разбиениях совпали (оказались на одинаковых позициях). Какую наибольшую сумму выигрыша может гарантировать себе Вася независимо от действий Пети? Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны. Дан отрезок [0, 1]. За ход разрешается разбить любой из имеющихся отрезков точкой на два новых отрезка и записать на доску произведение длин этих двух новых отрезков. Докажите равенства: Дан многочлен P(x) с действительными коэффициентами. Бесконечная
последовательность различных натуральных чисел a1, a2, a3, ... такова, что Дан неравнобедренный треугольник $ABC$. Выберем произвольную окружность ω, касающуюся описанной окружности Ω треугольника $ABC$ внутренним образом в точке $B$ и не пересекающую прямую $AC$. Отметим на ω точки $P$ и $Q$ так, чтобы прямые $AP$ и $CQ$ касались ω, а отрезки $AP$ и $CQ$ пересекались внутри треугольника $ABC$. Докажите, что все полученные таким образом прямые $PQ$ проходят через одну фиксированную точку, не зависящую от выбора окружности ω. В выпуклом 2002-угольнике провели несколько диагоналей, не пересекающихся внутри 2002-угольника. В результате 2002-угольник разделился на 2000 треугольников. Могло ли случиться, что ровно у половины этих треугольников все стороны являются диагоналями этого 2002-угольника? Найдите наибольшее натуральное $n$, обладающее следующим свойством: для любого простого нечетного $p$, меньшего $n$, разность $n - p$ также является простым числом. В треугольнике ABC биссектриса AL, серединный перпендикуляр к стороне AB и высота BK пересекаются в одной точке. Докажите, что биссектриса AL, серединный перпендикуляр к AC и высота CH, также пересекаются в одной точке. Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12. Вычислите На доске написано число 7. Петя и Вася по очереди приписывают к текущему числу по одной цифре, начинает Петя. Цифру можно приписать в начало числа (кроме нуля), в его конец или между любыми двумя цифрами. Побеждает тот, после чьего хода число на доске станет точным квадратом. Может ли кто-нибудь гарантированно победить, как бы ни играл соперник? Натуральное число умножили на 5, результат снова умножили на 5 и так далее, всего сделали $k$ умножений. Оказалось, что в десятичной записи исходного числа и полученных $k$ чисел нет На столе лежат 2002 карточки с числами 1, 2, 3,... , 2002. Двое играющих берут по одной карточке по очереди. После того, как будут взяты все карточки, выигравшим считается тот, у кого больше последняя цифра суммы чисел на взятых карточках. Кто из играющих может всегда выигрывать, как бы ни играл противник, и как он должен при этом играть? Многочлен третьей степени имеет три различных корня строго между 0 и 1. Учитель сообщил ученикам два из этих корней. Ещё он сообщил все четыре коэффициента многочлена, но не указал, в каком порядке эти коэффициенты идут. Обязательно ли можно восстановить третий корень? В банке работают 2002 сотрудника. Все сотрудники пришли на юбилей, и их рассадили за один круглый стол. Известно, что зарплаты сидящих рядом различаются на 2 или 3 доллара. Какой наибольшей может быть разница двух зарплат сотрудников этого банка, если известно, что все зарплаты сотрудников различны? Два десятизначных числа назовем соседними, если они различаются только одной цифрой в каком-то из разрядов (например, 1234567890 и 1234507890 соседние). Какое наибольшее количество десятизначных чисел можно выписать так, чтобы среди них не было соседних? Пусть О – центр правильного многоугольника A1A2A3...An, X
– произвольная точка плоскости. Докажите, что: б) Параллелограмм $ABCD$ разделён диагональю $BD$ на два равных треугольника. В треугольник $ABD$ вписан правильный шестиугольник так, что две его соседние стороны лежат на $AB$ и $AD$, а одна из вершин – на $BD$. В треугольник $CBD$ вписан правильный шестиугольник так, что две его соседние вершины лежат на $CB$ и $CD$, а одна из сторон – на $BD$. Какой из шестиугольников больше? На Поле Чудес выросло 11 золотых монет, но стало известно, что ровно четыре из них фальшивые. Все настоящие монеты весят одинаково, все фальшивые тоже, но они легче настоящих. Лиса Алиса и Буратино собрали монеты и стали их делить. Алиса собирается отдать Буратино четыре монеты, но он хочет сначала проверить, все ли они настоящие. Сможет ли он сделать это за два взвешивания на чашечных весах без гирь?
Число x таково, что число
x + Числовая последовательность определяется условиями: |
Страница: 1 2 >> [Всего задач: 6]
Докажите, что существует такой набор из 100 различных натуральных чисел
c1, c2, ..., c100, что для любых двух соседних чисел ci и ci+1 этого набора сумма
Куб с ребром n составлен из белых и чёрных кубиков с ребром 1 таким образом, что каждый белый кубик имеет общую грань ровно с тремя чёрными, а каждый чёрный – ровно с тремя белыми. При каких n это возможно?
Числовая последовательность определяется условиями:
В таблице m строк, n столбцов. Горизонтальным ходом называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется вертикальный ход ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое k, что за k ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов.
Биссектриса угла A треугольника ABC пересекает описанную окружность в точке D. Пусть P – точка, симметричная центру вписанной окружности треугольника ABC относительно середины стороны BC, M – вторая точка пересечения прямой DP с описанной окружностью. Докажите, что расстояние от точки M до одной из вершин A, B, C равно сумме расстояний от M до двух других вершин.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке