ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи


Существует ли такое число n , что числа
  а)  n – 96,  n,  n + 96;
  б)  n – 1996,  n,  n + 1996
простые? (Все простые числа считаем положительными.)

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 98302

Темы:   [ Системы линейных уравнений ]
[ Текстовые задачи (прочее) ]
Сложность: 2+
Классы: 6,7,8

Сто человек ответили на вопрос: "Будет ли новый президент лучше прежнего?" Из них a человек считают, что будет лучше, b – что будет такой же, и c – что будет хуже. Социологи построили два показателя "оптимизма" опрошенных:  m = a + b/2  и  n = a – c.  Оказалось, что  m = 40.  Найдите n.

Прислать комментарий     Решение

Задача 98292

Темы:   [ Простые числа и их свойства ]
[ Признаки делимости на 3 и 9 ]
[ Деление с остатком ]
Сложность: 3-
Классы: 6,7,8


Существует ли такое число n , что числа
  а)  n – 96,  n,  n + 96;
  б)  n – 1996,  n,  n + 1996
простые? (Все простые числа считаем положительными.)
Прислать комментарий     Решение


Задача 98303

Темы:   [ Десятичная система счисления ]
[ Линейные неравенства и системы неравенств ]
[ Принцип крайнего (прочее) ]
Сложность: 3-
Классы: 7,8

Девять цифр: 1, 2, 3, ..., 9 выписаны в некотором порядке (так что получилось девятизначное число). Рассмотрим все тройки цифр, идущих подряд, и найдём сумму соответствующих семи трёхзначных чисел. Каково наибольшее возможное значение этой суммы?

Прислать комментарий     Решение

Задача 108074

Темы:   [ Неравенства для углов треугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3-
Классы: 8,9

Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
Найдите углы этого треугольника, если известно, что все они выражаются целым числом градусов.

Прислать комментарий     Решение

Задача 98283

Темы:   [ Десятичная система счисления ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 6,7,8

Шестизначное число начинается с цифры 5. Верно ли, что к нему всегда можно приписать справа шесть цифр так, чтобы получился полный квадрат?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .