ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В четырёхугольнике длины всех сторон и диагоналей меньше 1 м. Доказать, что его можно поместить в круг радиуса 0,9 м. Положительные числа a, b, c таковы, что a² + b² – ab = c². Докажите, что (a – c)(b – c) ≤ 0. |
Страница: 1 2 >> [Всего задач: 6]
Положительные числа a, b, c таковы, что a² + b² – ab = c². Докажите, что (a – c)(b – c) ≤ 0.
Заданы две непересекающиеся окружности с центрами O1 и O2 и их общая внешняя касательная, касающаяся окружностей соответственно в точках A1 и A2. Пусть B1 и B2 – точки пересечения отрезка O1O2 с соответствующими окружностями, а C – точка пересечения прямых A1B1 и A2B2. Докажите, что прямая, проведённая через точку C перпендикулярно B1B2, делит отрезок A1A2 пополам.
В ряд выписаны действительные числа a1, a2, a3, ..., a1996. Докажите, что можно выделить одно или несколько стоящих рядом чисел так, что их сумма будет отличаться от целого числа меньше, чем на 0,001.
В углу шахматной доски размером m×n полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть?
a) Восемь школьников решали восемь задач. Оказалось, что каждую задачу решили пять школьников. Докажите, что найдутся такие два школьника, что каждую задачу решил хотя бы один из них.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке