Страница:
<< 1 2 [Всего задач: 10]
Задача
98300
(#М1541)
|
|
Сложность: 4- Классы: 7,8,9
|
Вдоль лыжной трассы расставлено в ряд бесконечное число кресел, занумерованных по порядку: 1, 2, 3, ... Кассирша продала билеты на первые m мест, но на некоторые места она продала не один билет, и общее число проданных билетов n > m. Зрители входят на трассу по одному. Каждый, подходя к месту, указанному на его билете, занимает его, если оно свободно, а если оно занято, говорит "Ох!" и идёт к следующему по номеру месту. Если оно свободно, то занимает его, если же занято, снова говорит "Ох!" и двигается дальше – до первого свободного места. Докажите, что общее количество "охов" не зависит от того, в каком порядке зрители выходят на трассу.
Задача
98299
(#М1542)
|
|
Сложность: 3 Классы: 7,8
|
а) К любому ли шестизначному числу, начинающемуся с цифры 5, можно приписать еще 6 цифр так, чтобы полученное 12-значное число было полным квадратом?
б) Тот же вопрос про число, начинающееся с 1.
в) Найдите для каждого n такое наименьшее k = k(n), что к каждому n-значному числу можно приписать еще k цифр так, чтобы полученное (n+k)-значное число было полным квадратом.
Задача
108114
(#М1543)
|
|
Сложность: 4- Классы: 8,9
|
В плоскости выпуклого четырёхугольника ABCD расположена точка P.
Проведены биссектрисы PK,PL, PM и PN треугольников APB, BPC, CPD и DPA соответственно.
а) Найдите хотя бы одну такую точку P, для которой четырёхугольник
KLMN – параллелограмм.
б) Найдите все такие точки.
Задача
98290
(#М1544)
|
|
Сложность: 4- Классы: 9,10
|
Существует ли возрастающая арифметическая прогрессия
а) из 11,
б) из 10000,
в) из бесконечного числа натуральных чисел,
такая что последовательность сумм цифр её членов – также возрастающая
арифметическая прогрессия?
Задача
98280
(#М1545)
|
|
Сложность: 4+ Классы: 8,9,10
|
Есть доска 1×1000, вначале пустая, и куча из n фишек. Двое ходят по очереди. Первый своим ходом "выставляет" на доску не более 17 фишек по одной на любое свободное поле (он может взять все 17 из кучи, а может часть – из кучи, а часть – переставить на доске). Второй снимает с доски любую серию фишек (серия – это несколько фишек, стоящих подряд, то есть без свободных полей между ними) и кладёт их обратно в кучу. Первый выигрывает, если ему удастся выставить все фишки в ряд без пробелов.
а) Докажите, что при n = 98 первый всегда может выиграть.
б) При каком наибольшем n первый всегда может выиграть?
Страница:
<< 1 2 [Всего задач: 10]