ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружность пересекает каждую сторону ромба в двух точках и делит её на три отрезка. Обойдём контур ромба, начав с какой-нибудь вершины, по часовой стрелке, и покрасим три отрезка каждой стороны последовательно в красный, белый и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]
a и b – натуральные числа. Известно, что a² + b² делится на ab. Докажите, что a = b.
В треугольнике одна сторона в три раза меньше суммы двух других. Докажите, что против этой стороны лежит наименьший угол треугольника.
Окружность пересекает каждую сторону ромба в двух точках и делит её на три отрезка. Обойдём контур ромба, начав с какой-нибудь вершины, по часовой стрелке, и покрасим три отрезка каждой стороны последовательно в красный, белый и синий цвета. Докажите, что сумма длин красных отрезков равна сумме длин синих.
Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма?
Существуют ли три таких различных простых числа p, q, r, что p² + d делится на qr, q² + d делится на rp, r² + d делится на pq, если
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|