ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



Задача 98345

Темы:   [ Уравнения в целых числах ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Куб ]
[ Разложение на множители ]
[ Объем тела равен сумме объемов его частей ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Куб разрезали на 99 кубиков, из которых ровно у одного ребро имеет длину, отличную от 1 (у каждого из остальных ребро равно 1).
Найдите объём исходного куба.

Прислать комментарий     Решение

Задача 98347

Темы:   [ Выпуклые и невыпуклые фигуры (прочее) ]
[ Перегруппировка площадей ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 9,10,11

Центр круга – точка с декартовыми координатами  (a, b).  Известно, что начало координат лежит внутри круга. Обозначим через S+ общую площадь частей круга, состоящих из точек, обе координаты которых имеют одинаковый знак; а через S – площадь частей, состоящих из точек с координатами разных знаков. Найдите величину  S+S.

Прислать комментарий     Решение

Задача 98315

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

а) Может ли случиться, что в компании из 10 девочек и 9 мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек?
б) А если девочек 11, а мальчиков 10?

Прислать комментарий     Решение

Задача 98324

Темы:   [ Перегруппировка площадей ]
[ Круг, сектор, сегмент и проч. ]
[ Доказательство от противного ]
[ Инварианты ]
Сложность: 3+
Классы: 6,7,8

Можно ли бумажный круг с помощью ножниц перекроить в квадрат той же площади?
(Разрешается сделать конечное число разрезов по прямым линиям и дугам окружностей.)

Прислать комментарий     Решение

Задача 98329

Темы:   [ Шестиугольники ]
[ Средняя линия трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 10,11

Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .