Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 43]
|
|
Сложность: 3 Классы: 7,8,9,10
|
Куб разрезали на 99 кубиков, из которых ровно у одного ребро имеет длину,
отличную от 1 (у каждого из остальных ребро равно 1).
Найдите объём исходного куба.
|
|
Сложность: 3 Классы: 9,10,11
|
Центр круга – точка с декартовыми координатами (a, b).
Известно, что начало координат лежит внутри круга. Обозначим через S+ общую площадь частей круга, состоящих из точек, обе координаты которых имеют одинаковый знак; а через S– – площадь частей, состоящих из точек с координатами разных знаков. Найдите величину S+ – S–.
а) Может ли случиться, что в компании из 10 девочек и 9 мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек?
б) А если девочек 11, а мальчиков 10?
|
|
Сложность: 3+ Классы: 6,7,8
|
Можно ли бумажный круг с помощью ножниц перекроить в квадрат той же площади?
(Разрешается сделать конечное число разрезов по прямым линиям и дугам
окружностей.)
|
|
Сложность: 3+ Классы: 10,11
|
Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 43]