Страница: 1
2 >> [Всего задач: 6]
Задача
98327
(#1)
|
|
Сложность: 2+ Классы: 8,9,10
|
Можно ли покрасить четыре вершины куба в красный цвет и четыре другие – в синий так, чтобы плоскость, проходящая через любые три точки одного цвета, содержала точку другого цвета?
Задача
98328
(#2)
|
|
Сложность: 4 Классы: 8,9,10
|
а) Докажите для всех n > 2 неравенство
б) Найдите какие-нибудь такие натуральные числа a, b, c, что для всех n > 2
Задача
98329
(#3)
|
|
Сложность: 3+ Классы: 10,11
|
Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.
Задача
98330
(#4)
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что не существует никакой (даже разрывной) функции y = f(x), для которой f(f(x)) = x² – 1996 при всех x.
Задача
98331
(#5)
|
|
Сложность: 5+ Классы: 9,10,11
|
а) Четыре порта 1, 2, 3, 4 расположены (в этом порядке) на
окружности круглого острова. Их связывает плоская сеть дорог, на которых могут
быть перекрёстки, то есть точки, где пересекаются, сходятся или разветвляются
дороги. На всех участках дорог введено одностороннее движение так, что, выехав
от любого порта или перекрёстка, нельзя вернуться в него снова. Пусть fij означает число различных путей, идущих из порта i в порт j. Докажите неравенство f14f23 ≥ f13f24.
б) Докажите, что если портов шесть: 1, 2, 3, 4, 5, 6
(по кругу в этом порядке), то
f16f25f34 +
f15f24f36 +
f14f26f35 ≥
f16f24f35 +
f15f26f34 +
f14f25f36.
Страница: 1
2 >> [Всего задач: 6]