Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

С помощью циркуля и линейки разделите данный треугольник на три равновеликих треугольника прямыми, выходящими из одной вершины.

Вниз   Решение


Назовем натуральное число "замечательным", если оно самое маленькое среди натуральных чисел с такой же, как у него, суммой цифр. Чему равна сумма цифр две тысячи первого замечательного числа?

ВверхВниз   Решение


Был очень жаркий день, и четыре пары выпили вместе 44 бутылки кока-колы. Aнна выпила 2, Бетти 3, Кэрол 4 и Дороти 5 бутылок. М-р Браун выпил столько же бутылок, сколько и его жена, но каждый из других мужчин выпил больше, чем его жена: м-р Грин вдвое, м-р Вайт в три раза и м-р Смит в четыре раза. Назовите жён этих мужчин.

ВверхВниз   Решение


Расположите в порядке возрастания числа: 2222, 2222, 2222.

ВверхВниз   Решение


Назовём натуральное число "замечательным", если оно – самое маленькое среди всех натуральных чисел с такой же, как у него, суммой цифр.
Сколько существует трёхзначных замечательных чисел?

ВверхВниз   Решение


Существует ли набор чисел, сумма которых равна 1, а сумма их квадратов меньше 0,01?

ВверхВниз   Решение


Обезьянки – Маша, Даша, Глаша и Наташа – съели на обед 16 мисочек манной каши. Каждой обезьянке что-то досталось. Глаша и Наташа вместе съели 9 порций. Маша съела больше Даши, больше Глаши и больше Наташи. Сколько мисочек каши досталось обезьянке Даше?

ВверхВниз   Решение


Путешественник оказался в какой-то из двух стран — А или Я. Он знает, что все жители страны А по четным числам говорят правду, а по нечетным — лгут, а жители страны Я — наоборот, по нечетным числам говорят правду, а по четным — лгут. Притом все они часто ездят в гости друг к другу. Может ли путешественник, задав один-единственный вопрос первому встречному, узнать, в какой из стран он находится?

ВверхВниз   Решение


Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.

ВверхВниз   Решение


Найдите последнюю цифру числа 19891989.

ВверхВниз   Решение


Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?

Вверх   Решение

Задачи

Страница: << 76 77 78 79 80 81 82 >> [Всего задач: 644]      



Задача 98651

Темы:   [ Индукция (прочее) ]
[ Раскладки и разбиения ]
[ Перебор случаев ]
[ Деление с остатком ]
Сложность: 3-
Классы: 6,7,8

Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?

Прислать комментарий     Решение

Задача 98656

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
Сложность: 3-
Классы: 6,7

У марсиан бывает произвольное число рук. Однажды все марсиане взялись за руки так, что свободных рук не осталось.
Докажите, что число марсиан, у которых нечётное число рук, чётно.

Прислать комментарий     Решение

Задача 98659

 [Обеды обезьянок]
Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Арифметика. Устный счет и т.п. ]
[ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 6,7

Обезьянки – Маша, Даша, Глаша и Наташа – съели на обед 16 мисочек манной каши. Каждой обезьянке что-то досталось. Глаша и Наташа вместе съели 9 порций. Маша съела больше Даши, больше Глаши и больше Наташи. Сколько мисочек каши досталось обезьянке Даше?

Прислать комментарий     Решение

Задача 98705

Тема:   [ Разные задачи на разрезания ]
Сложность: 3-
Классы: 5,6

В Волшебной Стране свои волшебные законы природы, один из которых гласит: "Ковёр-самолет будет летать только тогда, когда он имеет прямоугольную форму". У Ивана-царевича был ковёр-самолет размером 9×12. Как-то раз Змей Горыныч подкрался и отрезал от этого ковра маленький коврик размером 1×8. Иван-царевич очень расстроился и хотел было отрезать еще кусочек 1×4, чтобы получился прямоугольник 8×12, но Василиса Премудрая предложила поступить по-другому. Она разрезала ковёр на три части, из которых волшебными нитками сшила квадратный ковёр-самолет размером 10×10. Как Василиса Премудрая переделала испорченный ковер?

Прислать комментарий     Решение

Задача 102799

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3-
Классы: 7,8,9

При каких значениях a и b выражение  p = 2a² − 8ab + 17b² − 16a − 4b + 2044  принимает наименьшее значение? Чему равно это значение?

Прислать комментарий     Решение

Страница: << 76 77 78 79 80 81 82 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .