|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Имеется 200 карточек размером 1×2, на каждой из которых написаны числа +1 и -1. Можно ли так заполнить этими карточками лист клетчатой бумаги размером 4×100, чтобы произведения чисел в каждом столбце и каждой строке образовавшейся таблицы были положительны? (Карточка занимает целиком две соседние клетки.) a) Докажите, что в любой футбольной команде есть два игрока, которые родились в один и тот же день недели. b) Докажите, что среди жителей Москвы найдутся десять тысяч, празднующих день рождения в один и тот же день. Карлсону подарили пакет с конфетами: шоколадными и карамельками. За первые 10 минут Карлсон съел 20% всех конфет, причем 25% из них составляли карамельки. После этого Карлсон съел еще три шоколадные конфеты, и доля карамелек среди съеденных Карлсоном конфет понизилась до 20%. Сколько конфет было в подаренном Карлсону пакете? |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 52]
На конференции присутствуют 50 учёных, каждый из которых знаком по крайней мере с 25 участниками конференции.
Каждый из 102 учеников одной школы знаком не менее чем с 68 другими.
Расстоянием между двумя произвольными вершинами дерева будем называть длину простого пути, соединяющего их. Удалённостью вершины дерева назовём сумму расстояний от неё до всех остальных вершин. Докажите, что в дереве, у которого есть две вершины с удалённостями, отличающимися на 1, нечётное число вершин.
Дима нарисовал на доске семь графов, каждый из которых является деревом с шестью вершинами. Докажите, что среди них есть два изоморфных.
В некоторой стране каждые два города соединены либо авиалинией, либо железной дорогой. Докажите, что
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 52] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|