ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что центр описанной окружности прямоугольного треугольника совпадает с серединой гипотенузы. Замените буквы в слове ТРАНСПОРТИРОВКА цифрами (разным буквам соответствуют разные цифры, а одинаковым одинаковые) так, чтобы выполнялось неравенство Т > Р > А > Н < С < П < О < Р < Т > И > Р > О < В < К < А. Диагонали трапеции ABCD перпендикулярны. Точка M – середина боковой стороны AB, точка N симметрична центру описанной окружности треугольника ABD относительно прямой AD. Докажите, что ∠CMN = 90°. Пусть m и n – целые числа. Докажите, что mn(m + n) – чётное число. Докажите, что если α, β, γ и α1, β1, γ1 – углы двух треугольников, то cos α1/sin α + cos β1/sin β + cos γ1/sin γ ≤ ctg α + ctg β + ctg γ. Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке? Биссектриса угла C и внешнего угла A трапеции ABCD с основаниями BC и AD пересекаются в точке M, а биссектриса угла B и внешнего угла D – в точке N. Докажите, что середина отрезка MN равноудалена от прямых AB и CD. Легко можно разрезать квадрат на два равных треугольника или два равных
четырёхугольника. В прямоугольном треугольнике ABC с прямым углом C провели биссектрисы AK и BN, на которые опустили перпендикуляры CD и CE из вершины прямого угла. Докажите, что длина отрезка DE равна радиусу вписанной окружности. |
Страница: << 1 2 3 4 >> [Всего задач: 18]
Дано 25 чисел. Сумма любых четырех из них положительна. Докажите, что сумма их всех тоже положительна.
Петя и Вася выписывают 12-значное число, ставя цифры по очереди, начиная со старшего разряда. Начинает Петя. Докажите, что какие бы цифры он не писал, Вася всегда сможет добиться, чтобы получившееся число делилось на 9.
Четыре дома расположены по окружности. Где надо вырыть колодец, чтобы сумма расстояний от домов до колодца была наименьшей?
Известно, что число a + 1/a – целое. Докажите, что число a² + 1/a² – тоже целое.
В турнире по олимпийской системе (проигравший выбывает) участвует 50 боксеров.
Страница: << 1 2 3 4 >> [Всего задач: 18]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке