Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 50]
Задача
73744
(#М209)
|
|
Сложность: 5 Классы: 9,10,11
|
Для любого треугольника можно вычислить сумму квадратов тангенсов половин его углов. Докажите, что эта сумма
а) меньше 2 для любого остроугольного треугольника;
б) не меньше 2 для любого тупоугольного треугольника, величина тупого угла которого больше или равна 2 arctg 4/3; а среди треугольников с тупым углом, меньшим 2 arctg 4/3, имеются и такие, сумма квадратов тангенсов половин углов которых больше 2, и такие, сумма квадратов тангенсов половин углов которых меньше 2.
Задача
79258
(#М210)
|
|
Сложность: 5 Классы: 9,10,11
|
Имеется 100-значное число, состоящее из единиц и двоек. Разрешается в любых
десяти последовательных цифрах поменять местами первые пять с пятью следующими.
Два таких числа называются
похожими, если одно из них получается из другого
несколькими такими операциями. Какое наибольшее количество попарно непохожих
чисел можно выбрать?
Задача
73746
(#М211)
|
|
Сложность: 4- Классы: 8,9,10
|
Дано n точек, n > 4. Докажите, что можно соединить их стрелками так, чтобы из каждой точки в любую другую можно было попасть, пройдя либо по одной стрелке, либо по двум (каждые две точки можно соединить стрелкой только в одном направлении; идти по стрелке можно только в указанном на ней направлении).
Задача
73747
(#М212)
|
|
Сложность: 4+ Классы: 7,8,9
|
На суде в качестве вещественного доказательства предъявлено
14 монет. Эксперт обнаружил, что семь из
них — фальшивые,
остальные — настоящие, причём узнал, какие именно фальшивые, а
какие — настоящие. Суд же знает только, что фальшивые монеты весят одинаково, настоящие монеты весят одинаково, а фальшивые легче настоящих. Эксперт хочет тремя взвешиваниями на чашечных весах без гирь доказать суду, что все обнаруженные им фальшивые монеты действительно фальшивые, а
остальные — настоящие. Сможет ли он это сделать?
Задача
73749
(#М214)
|
|
Сложность: 3+ Классы: 8,9,10
|
Квадратный трёхчлен f(x) = ax² + bx + c таков, что уравнение f(x) = x не имеет вещественных корней.
Докажите, что уравнение f(f(x)) = x также не имеет вещественных корней.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 50]