ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Имеется таблица M × N, в каждой ячейке которой записано либо целое число, либо арифметическая формула. В формулах могут присутствовать целые числа, знаки *, /, +, -, (, ), пробелы и ссылки на значения из других ячеек таблицы, записываемые в виде {НомерCтроки, НомерCтолбца} (например, {1,10}). Требуется вычислить значения во всех ячейках заданной таблицы.

Входные данные:

В первой строке входного файла записаны целые числа M и N (1 ≤ M, N ≤ 20). В каждой из последующих M строк содержится описание очередной строки таблицы. Описание состоит из целых чисел и арифметических формул, разделенных символами | (ASCII-код 124). Все числа принадлежат диапазону [-32768, 32767], а длина каждой формулы не превышает 100 символов.

Выходные данные:

Выведите в выходной файл значения всех ячеек таблицы. Значения ячеек каждой строки таблицы должны быть записаны через пробел в отдельной строке выходного файла. Все значения следует выводить с точностью до двух знаков после десятичной точки. Если значение ячейки вычислить невозможно, вместо него следует вывести символ - (ASCII-код 45).

Пример входного файла

2  3
  1      |    {1, 1   }*10        +3 |     -{1,2}/{2,2}
{2,3} |             0                     |           {2,1}

Пример выходного файла

1.00 13.00 -
- 0.00 -

Вниз   Решение


У Чебурашки есть набор из 36 камней массами 1 г, 2 г, ..., 36 г, а у Шапокляк есть суперклей, одной каплей которого можно склеить два камня в один (соответственно, можно склеить три камня двумя каплями и так далее). Шапокляк хочет склеить камни так, чтобы Чебурашка не смог из получившегося набора выбрать один или несколько камней общей массой 37 г. Какого наименьшего количества капель клея ей хватит, чтобы осуществить задуманное?

Вверх   Решение

Задачи

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 391]      



Задача 89906

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Центральная симметрия помогает решить задачу ]
[ Свойства симметрии и центра симметрии ]
Сложность: 2+
Классы: 6,7

На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
Прислать комментарий     Решение


Задача 89911

Темы:   [ Парадоксы ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 6,7

Башенные часы отбивают три удара за 12 с. В течение какого времени они пробьют шесть ударов?
Прислать комментарий     Решение


Задача 98670

Темы:   [ Математическая логика (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 6,7

Среди 4-х людей нет трех с одинаковым именем, одинаковым отчеством или одинаковой фамилией, но у любых двух людей совпадают либо имя, либо отчество, либо фамилия. Может ли так быть?
Прислать комментарий     Решение


Задача 102792

Темы:   [ Осевая и скользящая симметрии ]
[ ГМТ - прямая или отрезок ]
Сложность: 2+
Классы: 7,8,9

Найти множество точек. Даны две точки А и В. Найти множество точек, каждая из которых является симметричным образом точки А относительно некоторой прямой, проходящей через точку В.
Прислать комментарий     Решение


Задача 102797

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Уравнения высших степеней (прочее) ]
Сложность: 2+
Классы: 7,8,9

Решить уравнение  [x³] + [x²] + [x] = {x} − 1.

Прислать комментарий     Решение

Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .