Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 30]
|
|
Сложность: 3+ Классы: 10,11
|
Дана геометрическая прогрессия, знаменатель которой — целое число (не равное
0 и -1). Докажите, что сумма любого числа произвольно выбранных её членов
не может равняться никакому члену этой прогрессии.
Два человека A и B должны попасть как можно скорее из пункта M в пункт N, расположенный в 15 км от M. Пешком они могут передвигаться со скоростью 6 км/ч. Кроме того, в их распоряжении есть велосипед, на котором можно ехать со скоростью 15 км/ч. A отправляется в путь пешком, а B едет на велосипеде до встречи с пешеходом C, идущим из N и M. Дальше B идёт пешком, а C едет на велосипеде до встречи с A и передаёт ему велосипед, на котором тот и приезжает в N. Когда должен выйти из N пешеход C, чтобы время, затраченное A и B на дорогу в N, было наименьшим? (C идёт пешком с той же скоростью, что A и B; время, затраченное на дорогу, считается от момента выхода A и B из M до момента прибытия последнего из них в N.)
Из точки C проведены касательные CA и CB к окружности O. Из произвольной точки N окружности опущены перпендикуляры ND, NE, NF соответственно на прямые A, CA и CB. Докажите, что ND есть среднее геометрическое чисел NE и NF.
|
|
Сложность: 4 Классы: 10,11
|
ABC разбит прямой
BD на два треугольника. Докажите, что сумма
радиусов окружностей, вписанных в
ABD и
DBC, больше радиуса
окружности, вписанной в
ABC.
|
|
Сложность: 4 Классы: 10,11
|
Поместить в полый куб с ребром
a три цилиндра диаметра
![$ {\frac{a}{2}}$](show_document.php?id=1054830)
и
высоты
a так, чтобы они не могли менять своего положения внутри куба.
Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 30]