Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Ma, Mb, Mc – середины сторон, Ha, Hb, Hc – основания высот треугольника ABC площади S.
Доказать, что из отрезков MaHb, MbHc, McHa можно составить треугольник, найти его площадь.

Вниз   Решение


Пусть h  — наименьшая высота тетраэдра, d  — наименьшее расстояние между его противоположными ребрами. При каких t возможно неравенство d>th ?

ВверхВниз   Решение


Площадь равнобедренной трапеции равна 32. Котангенс угла между диагональю и основанием равен 2. Найдите высоту трапеции.

ВверхВниз   Решение


Пусть M – точка пересечения медиан треугольника ABC . На перпендикулярах, опущенных из M на стороны BC , AC и AB , взяты точки A1 , B1 и C1 соответственно, причём A1B1 MC и A1C1 MB . Докажите, что точка M является точкой пересечения медиан и в треугольнике A1B1C1 .

ВверхВниз   Решение


Автор: Купцов Л.

Даны полуокружность с диаметром AB и центром O и прямая, пересекающая полуокружность в точках C и D, а прямую AB – в точке M  (MB < MA,
MD < MC
).  Пусть K – отличная от O точка пересечения описанных окружностей треугольников AOC и DOB. Докажите, что угол MKO – прямой.

ВверхВниз   Решение


Остроугольный треугольник ABC вписан в окружность ω. Касательные к ω, проведённые через точки B и C, пересекают касательную к ω, проведённую через точку A, в точках K и L соответственно. Прямая, проведённая через K параллельно AB, пересекается с прямой, проведённой через L параллельно AC, в точке P. Докажите, что  BP = CP.

ВверхВниз   Решение


Докажите, что площадь прямоугольного треугольника с острым углом в 15° равна одной восьмой квадрата гипотенузы.

ВверхВниз   Решение


Две прямые пересекаются в точке A под углом, не равным 90o ; B и C — проекции точки M на эти прямые. Найдите угол между прямой BC и прямой, проходящей через середины отрезков AM и BC .

ВверхВниз   Решение


Наиболее точный календарь ввёл в Персии в 1079 году персидский астроном, математик и поэт Омар Альхайями. Восстановите этот календарный стиль, рассмотрев третью подходящую дробь  [365; 4, 7, 1]  к длительности астрономического года. За сколько лет в этом календаре накапливается ошибка в одни сутки?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



Задача 78108

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Перебор случаев ]
Сложность: 3
Классы: 9,10,11

Школьник едет на кружок на трамвае, платит рубль и получает сдачу. Доказать, что если он обратно также поедет в трамвае, то он сможет уплатить за проезд без сдачи. (Примечание. Проезд в трамвае стоил 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.)
Прислать комментарий     Решение


Задача 30310

Темы:   [ Четность и нечетность ]
[ Целочисленные решетки ]
Сложность: 3+
Классы: 6,7,8

Улитка ползёт по плоскости с постоянной скоростью, каждые 15 минут поворачивая под прямым углом.
Докажите, что вернуться в исходную точку она сможет лишь через целое число часов.

Прислать комментарий     Решение

Задача 78101

Темы:   [ Делимость чисел. Общие свойства ]
[ Свойства коэффициентов многочлена ]
[ Целочисленные и целозначные многочлены ]
Сложность: 3+
Классы: 8,9,10

Известно, что  ax4 + bx³ + cx² + dx + e,  где a, b, c, d, e – данные целые числа, при любом целом x делится на 7.
Доказать, что все числа a, b, c, d, e делятся на 7.

Прислать комментарий     Решение

Задача 78102

Темы:   [ Смешанные уравнения и системы уравнений ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 3+
Классы: 10,11

Решить уравнение  x³ – [x] = 3.

Прислать комментарий     Решение

Задача 78106

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

При каких целых n число  20n + 16n – 3n – 1  делится на 323?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .