Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 39]
Доказать, что если целое n > 2, то (n!)² > nn.
Из бумаги вырезан многоугольник. Две точки его границы соединяются отрезком,
по которому многоугольник складывается. Доказать, что периметр многоугольника,
получающегося после складывания, меньше периметра исходного многоугольника.
Для любых чисел a1 и a2, удовлетворяющих условиям a1 ≥ 0, a2 ≥ 0, a1 + a2 = 1, можно найти такие числа b1 и b2, что b1 ≥ 0, b2 ≥ 0, b1 + b2 = 1,
(5/4 – a1)b1 + 3(5/4 – a2)b2 > 1. Доказать.
Имеется система уравнений
*
x + *y + *z = 0,
*
x + *y + *z = 0,
*
x + *y + *z = 0.
Два человека поочерёдно вписывают вместо звёздочек числа.
Доказать, что начинающий всегда может добиться того, чтобы система имела ненулевое решение.
|
|
Сложность: 3+ Классы: 8,9,10
|
На плоскости даны точки
A и
B. Построить такой квадрат, чтобы точки
A и
B лежали на его границе и сумма расстояний от точки
A до вершин квадрата
была наименьшей.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 39]