Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]
|
|
Сложность: 3+ Классы: 7,8,9
|
Какую цифру надо поставить вместо знака "?" в числе 888...88?99...999 (восьмёрка и девятка написаны по 50 раз), чтобы оно делилось на 7?
|
|
Сложность: 3+ Классы: 7,8,9
|
Найти шесть различных натуральных чисел, произведение любых двух из которых
делится на сумму этих двух чисел.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Можно ли провести в каждом квадратике на поверхности кубика Рубика диагональ так, чтобы получился несамопересекающийся путь?
|
|
Сложность: 3+ Классы: 8,9,10
|
Даны 1000 линейных функций: fk(x) = pkx + qk (k = 1, 2, ..., 1000). Нужно найти значение их композиции f(x) = f1(f2(f3(...f1000(x)...))) в точке x0. Докажите, что это можно сделать не более чем за 30 стадий, если на каждой стадии можно параллельно выполнять любое число арифметических операций над парами чисел, полученных на предыдущих стадиях, а на первой стадии используются числа p1, p2, ..., p1000, q1, q2, ..., q1000, x0.
|
|
Сложность: 3+ Классы: 7,8,9
|
Лестница имеет 100 ступенек. Коля хочет спуститься по лестнице, при этом он
двигается начиная сверху прыжками вниз и вверх по очереди. Прыжки бывают трёх
типов – на шесть ступенек (через пять на шестую), на семь и на восемь. Два раза на одну ступеньку Коля не становится. Сможет ли он спуститься?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]