ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 116479

Темы:   [ Раскраски ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3-
Классы: 7,8,9

В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?

Прислать комментарий     Решение

Задача 98357

Темы:   [ Задачи на движение ]
[ Средние величины ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

По неподвижному эскалатору человек спускается быстрее, чем поднимается. Что быстрее: спуститься и подняться по поднимающемуся эскалатору или спуститься и подняться по спускающемуся эскалатору? (Предполагается, что все скорости, о которых идет речь, постоянны, причём скорости эскалатора при движении вверх и вниз одинаковы, а скорость человека относительно эскалатора всегда больше скорости эскалатора.)

Прислать комментарий     Решение

Задача 98360

Темы:   [ Плоскость, разрезанная прямыми ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3
Классы: 6,7,8

Автор: Вялый М.Н.

а) Каким наименьшим числом прямых можно разрезать все клетки шахматной доски 3×3? (Чтобы клетка была разрезана, прямая должна проходить через внутреннюю точку этой клетки.)
б) Та же задача для доски 4×4.

Прислать комментарий     Решение

Задача 98361

Темы:   [ Рекуррентные соотношения (прочее) ]
[ Обратный ход ]
Сложность: 3
Классы: 7,8,9

Последовательность {xn} определяется условиями:  
Докажите, что среди членов последовательности найдётся ноль. Найдите номер этого члена.

Прислать комментарий     Решение

Задача 98369

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Докажите, что уравнение  xy(x – y) + yz(y – z) + zx(z – x) = 6  имеет бесконечно много решений в целых числах.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .