Страница: 1
2 >> [Всего задач: 6]
Задача
98394
(#1)
|
|
Сложность: 3+ Классы: 7,8,9
|
Докажите неравенство (a, b, c – положительные числа).
|
|
Сложность: 3+ Классы: 8,9,10
|
Квадрат со стороной 1 разрезали на прямоугольники, у каждого из которых отметили одну сторону.
Докажите, что сумма длин всех отмеченных сторон не может быть меньше 1.
Задача
98396
(#3)
|
|
Сложность: 4- Классы: 8,9,10
|
а) На доске выписаны числа 1, 2, 4, 8, 16, 32, 64, 128. Разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. После семи таких операций на доске будет только одно число. Может ли оно равняться 97?
б) На доске выписаны числа 1, 21, 2², 2³, ..., 210. Разрешается стереть любые два числа и вместо них выписать их разность – неотрицательное число. После нескольких таких операций на доске будет только одно число. Чему оно может быть равно?
Задача
98397
(#4)
|
|
Сложность: 4- Классы: 10,11
|
Внутренняя точка M выпуклого четырёхугольника ABCD такова, что треугольники AMB и CMD – равнобедренные с углом величиной 120° при вершине M.
Докажите существование такой точки N, что треугольники BNC и DNA – правильные.
Задача
98398
(#5)
|
|
Сложность: 4- Классы: 8,9,10
|
Назовём лабиринтом шахматную доску 8×8, где между некоторыми полями вставлены перегородки. Если ладья может обойти все поля, не перепрыгивая через перегородки, то лабиринт называется хорошим, иначе – плохим. Каких лабиринтов больше – хороших или плохих?
Страница: 1
2 >> [Всего задач: 6]