Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 42]
|
|
Сложность: 3+ Классы: 10,11
|
Вневписанные окружности касаются сторон AC и BC треугольника ABC в точках K и L. Докажите, что прямая, соединяющая середины KL и AB,
а) делит периметр треугольника ABC пополам;
б) параллельна биссектрисе угла ACB.
В трапеции ABCD площади 1 основания BC и AD относятся как 1 : 2.  Пусть K – середина диагонали AC. Прямая DK пересекает сторону AB в точке L. Найдите площадь четырёхугольника BCKL.
В основании призмы лежит n-угольник. Требуется раскрасить все 2n её вершин тремя красками так, чтобы каждая вершина была связана рёбрами с вершинами всех трёх цветов.
а) Докажите, что если n делится на 3, то такая раскраска возможна.
б) Докажите, что если если такая раскраска возможна, то n делится на 3.
|
|
Сложность: 3+ Классы: 10,11
|
Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре
чисел, связанных ребром, одно из них делилось на другое, а во всех других парах
такого не было?
|
|
Сложность: 3+ Классы: 10,11
|
Докажите неравенство
при любых натуральных n и k.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 42]