Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 42]
|
|
Сложность: 3 Классы: 10,11
|
Натуральные числа m и n взаимно просты (не имеют общего делителя, отличного от единицы). Дробь можно сократить на число d.
Каково наибольшее возможное значение d?
Может ли произведение двух последовательных натуральных чисел равняться
произведению двух последовательных чётных чисел?
|
|
Сложность: 3 Классы: 7,8,9
|
Длины оснований трапеции равны m см и n см (m и n – натуральные числа, m ≠ n). Докажите, что трапецию можно разрезать на равные треугольники.
Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
а) В каком отношении делятся диагонали полученного четырёхугольника их
точкой пересечения?
б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.
Рассматриваются тройки целых чисел a, b и c, для которых выполнено условие: a + b + c = 0. Для каждой такой тройки вычисляется число
d = a1999 + b1999 + c1999.
Может ли случиться, что
а) d = 2?
б) d – простое число?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 42]