Страница: 1 2 >> [Всего задач: 6]
|
|
Сложность: 3+ Классы: 8,9,10
|
Существуют ли такие натуральные числа a, b и c, что у каждого из уравнений ax² + bx + c = 0, ax + bx – c = 0, ax² – bx + c = 0,
ax² – bx – c = 0 оба корня – целые?
|
|
Сложность: 3+ Классы: 10,11
|
По рёбрам выпуклого многогранника с 2003 вершинами проведена замкнутая ломаная, проходящая через каждую вершину ровно один раз. Докажите, что в каждой из частей, на которые эта ломаная делит поверхность многогранника, количество граней с нечётным числом сторон нечётно.
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть P(x) – многочлен со старшим коэффициентом 1, а
последовательность целых чисел a1, a2, ... такова, что P(a1)= 0,
P(a2) = a1, P(a3) = a2 и т. д. Числа в последовательности не повторяются. Какую степень может иметь P(x)?
|
|
Сложность: 4+ Классы: 9,10,11
|
В стране несколько городов, соединённых дорогами с односторонним и
двусторонним движением. Известно, что из каждого города в любой другой можно
проехать ровно одним путём, не проходящим два раза через один и тот же город.
Докажите, что страну можно разделить на три губернии так, чтобы ни одна дорога
не соединяла два города из одной губернии.
|
|
Сложность: 4+ Классы: 10,11
|
Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций f1(x), f2(x), ..., fN(x), композициями которых можно записать любой из них (например, P1(x) = f2(f1(f2(x))))?
Страница: 1 2 >> [Всего задач: 6]