Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 56]
Задача
109702
(#99.5.9.4)
|
|
Сложность: 4+ Классы: 8,9,10
|
Числа от 1 до 1000000 покрашены в два цвета – чёрный и белый. За ход
разрешается выбрать любое число от 1 до 1000000 и перекрасить его и все числа,
не взаимно простые с ним, в противоположный цвет. Вначале все числа были чёрными.
Можно ли за несколько ходов добиться того, что все числа станут белыми?
Задача
109703
(#99.5.9.5)
|
|
Сложность: 4- Классы: 7,8,9
|
Правильный треугольник разбит на правильные треугольники со стороной 1
линиями, параллельными его сторонам и делящими каждую сторону на n
частей (на рисунке n = 5).
Какое наибольшее число отрезков длины 1 с концами в вершинах этих треугольников можно отметить так, чтобы не нашлось треугольника, все стороны которого состоят из отмеченных отрезков?
Задача
109704
(#99.5.9.6)
|
|
Сложность: 4+ Классы: 8,9,10
|
Докажите, что при любом натуральном n справедливо неравенство
Задача
108155
(#99.5.9.7)
|
|
Сложность: 4+ Классы: 8,9,10
|
Окружность S1, проходящая через вершины A и B треугольника ABC, пересекает сторону BC в точке D. Окружность S2, проходящая через вершины B и C, пересекает сторону AB в точке E и окружность S1 вторично в точке F. Оказалось, что точки A, E, D, C лежат на окружности S3 с центром O. Докажите, что угол BFO – прямой.
Задача
109706
(#99.5.9.8)
|
|
Сложность: 5- Классы: 7,8,9
|
В микросхеме 2000 контактов, первоначально любые два контакта соединены
отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода,
причем Вася (он начинает) за ход режет один провод, а Петя – либо один,
либо три провода.
Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает.
Кто из них выигрывает при правильной игре?
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 56]