|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Этапы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Колода перфокарт четырёх цветов разложена в один ряд. Если две перфокарты одного цвета лежат рядом или через одну, то можно выбрасывать ту из них, которая левее. Кроме того, можно подкладывать справа любое количество перфокарт из других колод. Доказать, что можно подкладывать и выбрасывать перфокарты таким образом, чтобы в конце концов их осталось только четыре. Прямые, параллельные оси Ox, пересекают график функции y = ax³ + bx² + cx + d: первая – в точках A, D и E, вторая – в точках B, C и F (см. рис.). Докажите, что длина проекции дуги CD на ось Ox равна сумме длин проекций дуг AB и EF. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]
Для некоторых натуральных чисел a, b, c и d выполняются равенства a/c = b/d = ab+1/cd+1. Докажите, что a = c и b = d.
В треугольнике ABC угол C – прямой. На стороне AC
нашлась такая точка D, а на отрезке BD – такая точка K, что ∠B = ∠KAD = ∠AKD.
Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.
По каждой из двух пересекающихся прямых с постоянными скоростями, не меняя направления, ползёт по жуку. Известно, что проекции жуков на ось OX никогда не совпадают (ни в прошлом, ни в будущем). Докажите, что проекции жуков на ось OY обязательно совпадут или совпадали раньше.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|