Страница: 1 2 >> [Всего задач: 6]
|
|
Сложность: 3 Классы: 8,9,10
|
После урока на доске остался график функции y = k/x и пять прямых, параллельных прямой y = kx (k ≠ 0).
Найдите произведение абсцисс всех десяти точек пересечения.
|
|
Сложность: 3+ Классы: 7,8,9
|
Докажите, что существует многоугольник, который можно разделить отрезком на две равные части так, что этот отрезок разделит одну из сторон многоугольника пополам, а другую – в отношении 2 : 1.
|
|
Сложность: 4- Классы: 8,9,10
|
В каждой клетке квадрата 101×101, кроме центральной,
стоит один из двух знаков: "поворот" или "прямо". Машинка въезжает
извне в произвольную клетку на границе квадрата, после чего ездит
параллельно сторонам клеток, придерживаясь двух правил:
1) в клетке со знаком "прямо" она продолжает путь в том же направлении;
2) в клетке со знаком "поворот" она поворачивает на 90°
(в любую сторону по своему выбору).
Центральную клетку квадрата занимает дом. Можно ли расставить знаки так, чтобы у машинки не было возможности врезаться в дом?
|
|
Сложность: 4- Классы: 9,10
|
Назовём последовательность натуральных чисел интересной, если каждый её член, кроме первого, является либо средним арифметическим, либо средним геометрическим двух соседних с ним членов. Сеня начал последовательность с трёх натуральных чисел, образующих возрастающую геометрическую прогрессию. Он хотел бы
продолжить свою последовательность до бесконечной интересной последовательности, которая ни с какого момента не становится ни арифметической, ни геометрической прогрессией.
Может ли оказаться, что этого нельзя сделать?
|
|
Сложность: 4 Классы: 8,9,10
|
Угол B при вершине равнобедренного треугольника ABC равен 120°. Из вершины B выпустили внутрь треугольника два луча под углом 60° друг к другу, которые, отразившись от основания AC в точках P и Q, попали на боковые стороны в точки M и N (см. рис.). Докажите, что площадь треугольника PBQ равна сумме площадей треугольников AMP и CNQ.
Страница: 1 2 >> [Всего задач: 6]