Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]
На стороне BC треугольника ABC выбрана точка L так, что AL в два раза больше медианы CM. Оказалось, что угол ALC равен 45°.
Докажите, что AL и CM перпендикулярны.
На переправу через пролив Босфор выстроилась очередь: первый Али-Баба, за ним 40 разбойников. Лодка одна, в ней могут плыть двое или трое (в одиночку плыть нельзя). Среди плывущих в лодке не должно быть людей, которые не дружат между собой. Смогут ли все они переправиться, если каждые двое рядом стоящих в очереди – друзья, а Али-Баба ещё дружит с разбойником, стоящим через одного от него?
|
|
Сложность: 3+ Классы: 10,11
|
В выпуклом четырёхугольнике ABCD диагонали перпендикулярны. На сторонах AD и CD отмечены соответственно точки M и N так, что углы ABN и CBM прямые. Докажите, что прямые AC и MN параллельны.
|
|
Сложность: 3+ Классы: 10,11
|
Натуральные числа a, b, c, d попарно взаимно просты и удовлетворяют равенству ab + cd = ac – 10bd.
Докажите, что среди них найдутся три числа, одно из которых равно сумме двух других.
|
|
Сложность: 3+ Классы: 10,11
|
Дан выпуклый четырёхугольник ABCD. Пешеход Петя выходит из вершины A, идёт по стороне AB и далее по контуру четырёхугольника. Пешеход Вася выходит из вершины A одновременно с Петей, идёт по диагонали AC и одновременно с Петей приходит в C. Пешеход Толя выходит из вершины B в тот момент, когда её проходит Петя, идёт по диагонали BD и одновременно с Петей приходит в D. Скорости пешеходов постоянны.
Могли ли Вася и Толя прийти в точку пересечения диагоналей O одновременно?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]