Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 48]
Задача
66248
(#21)
|
|
Сложность: 4 Классы: 8,9,10
|
Четырёхугольник ABCD вписан в окружность ω с центром O, M1 и M2 – середины сторон AB и CD соответственно; Ω – описанная окружность треугольника OM1M2, X1 и X2 – точки пересечения ω с Ω, а Y1 и Y2 – вторые точки пересечения описанных окружностей ω1 и ω2 треугольников CDM1 и ABM2 соответственно с Ω. Докажите, что X1X2 || Y1Y2.
Задача
66249
(#22)
|
|
Сложность: 4- Классы: 10,11
|
Грани икосаэдра окрасили в пять цветов (среди которых есть красный и синий) так, что две грани, окрашенные в один цвет, не имеют общих точек, даже вершин. Докажите, что для любой точки внутри икосаэдра сумма расстояний от нее до красных граней равна сумме расстояний до синих граней.
Задача
66250
(#23)
|
|
Сложность: 4 Классы: 10,11
|
Дан тетраэдр ABCD. В грани ABC и ABD вписаны окружности с центрами O1, O2, касающиеся ребра AB в точках T1, T2. Плоскость πAB проходит через середину отрезка T1T2 и перпендикулярна O1O2. Аналогично определяются плоскости πAC, πBC, πAD, πBD, πCD. Докажите, что все эти шесть плоскостей проходят через одну точку.
Задача
66251
(#24)
|
|
Сложность: 5 Классы: 10,11
|
В тетраэдр ABCD вписана сфера с центром O, касающаяся его граней BCD, ACD, ABD и ABC в точках A1, B1, C1 и D1 соответственно.
а) Пусть Pa – такая точка, что точки, симметричные ей относительно прямых OB, OC и OD, лежат в плоскости BCD. Точки Pb, Pc и Pd определяются аналогично. Докажите, что прямые A1Pa, B1Pb, C1Pc и D1Pd пересекаются в некоторой точке P.
б) Пусть I – центр сферы, вписанной в тетраэдр A1B1C1D1; A2 – точка пересечения прямой A1I с плоскостью B1C1D1; B2, C2, D2 определены аналогично. Докажите, что P лежит внутри тетраэдра A2B2C2D2.
Задача
65360
(#8.1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Пусть ABCD – трапеция, в которой углы A и B прямые,
AB = AD, CD = BC + AD, BC < AD.
Докажите, что угол ADC в два раза больше угла ABE, где E – середина AD.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 48]