ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 66550  (#1)

Тема:   [ Задачи-шутки ]
Сложность: 3
Классы: 6,7,8

Том написал на заборе из досок слово ММО, а Гек — число 2020. Ширина каждой буквы и цифры 9 см, а ширина доски забора — 5 см. Мог ли Гек испачкать меньше досок, чем Том? (Доски расположены вертикально, а слова и числа пишутся горизонтально. Цифры и буквы пишутся через равные промежутки.)
Прислать комментарий     Решение


Задача 66551  (#2)

Темы:   [ Дроби (прочее) ]
[ Вычисление площадей ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3
Классы: 8

Автор: Мухин Д.

На графике функции $y=1/x$ Миша отмечал подряд все точки с абсциссами 1, 2, 3, ..., пока не устал. Потом пришла Маша и закрасила все прямоугольники, одна из вершин которых — это отмеченная точка, еще одна — начало координат, а еще две лежат на осях (на рисунке показано, какой прямоугольник Маша закрасила бы для отмеченной точки $P$). Затем учительница попросила ребят посчитать площадь фигуры, состоящей из всех точек, закрашенных ровно один раз. Сколько получилось?

Прислать комментарий     Решение


Задача 66552  (#3)

Тема:   [ Процессы и операции ]
Сложность: 3
Классы: 8

Дано натуральное число $N$. Вера делает с ним следующие операции: сначала прибавляет 3 до тех пор, пока получившееся число не станет делиться на 5 (если изначально $N$ делится на 5, то ничего прибавлять не надо). Получившееся число Вера делит на 5. Далее делает эти же операции с новым числом, и так далее. Из каких чисел такими операциями нельзя получить 1?
Прислать комментарий     Решение


Задача 66553  (#4)

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип Дирихле ]
Сложность: 4
Классы: 8

В турнире по гандболу участвуют 20 команд. После того как каждая команда сыграла с каждой по разу, оказалось, что количество очков у всех команд разное. После того как каждая команда сыграла с каждой по второму разу, количество очков у всех команд стало одинаковым. В гандболе за победу команда получает 2 очка, за ничью 1 очко, за поражение — 0 очков. Верно ли, что найдутся две команды, по разу выигравшие друг у друга?
Прислать комментарий     Решение


Задача 66554  (#5)

Темы:   [ Трапеции ]
[ Замечательное свойство трапеции ]
Сложность: 5
Классы: 8

Дана трапеция ABCD с основаниями AD и BC. Перпендикуляр, опущенный из точки A на сторону CD, проходит через середину диагонали BD, а перпендикуляр, опущенный из точки D на сторону AB, проходит через середину диагонали AC. Докажите, что трапеция равнобокая.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .