Страница: 1
2 >> [Всего задач: 7]
Задача
67073
(#1)
|
|
Сложность: 3+ Классы: 7,8,9
|
Для каждого из девяти натуральных чисел $n$, $2n$, $3n$, ..., $9n$ выписали на доску первую слева цифру в его десятичной записи. При этом n выбрали так, чтобы среди девяти выписанных цифр количество различных цифр было как можно меньше. Чему равно это количество?
Задача
67080
(#2)
|
|
Сложность: 3+ Классы: 9,10,11
|
В прямоугольной системе координат (с одинаковым масштабом по осям $x$ и $y$) нарисовали график функции $y = f(x)$. Затем ось ординат и все отметки на оси абсцисс стёрли. Предложите способ, как с помощью карандаша, циркуля и линейки восстановить ось ординат, если
а) $f(x) = 3^x$;
б) $f(x) = \operatorname{log}_{a} x$, где $a > 1$ – неизвестное число.
Задача
67022
(#3)
|
|
Сложность: 4 Классы: 9,10,11
|
Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны. Докажите, что радиусы вписанных окружностей двух исходных треугольников также равны.

Задача
67017
(#4)
|
|
Сложность: 4+ Классы: 8,9,10,11
|
По доске $n\times n$ прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до $n^2$ в порядке прохождения ладьи. Пусть $M$ — максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение $M$?
Задача
67026
(#5)
|
|
Сложность: 4 Классы: 9,10,11
|
Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале $(0,1)$?
Страница: 1
2 >> [Всего задач: 7]