Страница: 1 2 >> [Всего задач: 7]
Задача
67073
(#1)
|
|
Сложность: 4- Классы: 7,8,9
|
Для каждого из девяти натуральных чисел n,2n,3n,...,9n выписали на доску первую слева цифру в его десятичной записи. При этом n выбрали так, чтобы среди девяти выписанных цифр количество различных цифр было как можно меньше. Чему равно это количество?
Задача
67080
(#2)
|
|
Сложность: 3+ Классы: 9,10,11
|
В прямоугольной системе координат (с одинаковым масштабом по осям x и y) нарисовали график функции y=f(x). Затем ось ординат и все отметки на оси абсцисс стёрли. Предложите способ, как с помощью карандаша, циркуля и линейки восстановить ось ординат, если
а) f(x)=3x;
б) f(x) = logax, где a > 1 – неизвестное число.
Задача
67022
(#3)
|
|
Сложность: 4 Классы: 9,10,11
|
Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны.
Докажите, что радиусы вписанных окружностей двух исходных треугольников также равны.

Задача
67017
(#4)
|
|
Сложность: 4- Классы: 8,9,10,11
|
По доске n×n прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до n2 в порядке прохождения ладьи. Пусть M – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение M?
Задача
67026
(#5)
|
|
Сложность: 4 Классы: 9,10,11
|
Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале (0, 1)?
Страница: 1 2 >> [Всего задач: 7]