ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 67124

Темы:   [ Теоремы Чевы и Менелая ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
[ Неопределено ]
Сложность: 4-
Классы: 8,9,10,11

Пусть высоты остроугольного треугольника $ABC$ пересекаются в точке $H$. Окружность, описанная около треугольника $AHC$, пересекает отрезки $AB$ и $BC$ в точках $P$ и $Q$. Прямая $PQ$ пересекает $AC$ в $R$. На прямой $PH$ взята точка $K$ такая, что $\angle KAC = 90^{\circ}$. Докажите, что прямая $KR$ перпендикулярна одной из медиан треугольника $ABC$.
Прислать комментарий     Решение


Задача 67125

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пересекающиеся окружности ]
[ Стереографическая проекция ]
[ Правильные многоугольники ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Нилов Ф.

На плоскости провели несколько окружностей и отметили все точки их пересечения или касания. Может ли оказаться, что на каждой окружности лежат ровно пять отмеченных точек, а через каждую отмеченную точку проходят ровно пять окружностей?
Прислать комментарий     Решение


Задача 67121

Темы:   [ Поворотная гомотетия (прочее) ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9,10,11

Автор: Яковлев Б.

Дан равнобедренный треугольник $ABC$, $AB=AC$, $P$ – середина меньшей дуги $AB$ окружности $ABC$, $Q$ – середина отрезка $AC$. Окружность с центром в $O$, описанная около $APQ$, вторично пересекает $AB$ в точке $K$. Докажите, что прямые $PO$ и $KQ$ пересекаются на биссектрисе угла $ABC$.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .