Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 67124

Темы:   [ Теоремы Чевы и Менелая ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
[ Неопределено ]
Сложность: 4-
Классы: 8,9,10,11

Пусть высоты остроугольного треугольника ABC пересекаются в точке H. Окружность, описанная около треугольника AHC, пересекает отрезки AB и BC в точках P и Q. Прямая PQ пересекает AC в R. На прямой PH взята точка K такая, что KAC=90. Докажите, что прямая KR перпендикулярна одной из медиан треугольника ABC.
Прислать комментарий     Решение


Задача 67125

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Пересекающиеся окружности ]
[ Стереографическая проекция ]
[ Правильные многоугольники ]
[ Инверсия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Автор: Нилов Ф.

На плоскости провели несколько окружностей и отметили все точки их пересечения или касания. Может ли оказаться, что на каждой окружности лежат ровно пять отмеченных точек, а через каждую отмеченную точку проходят ровно пять окружностей?
Прислать комментарий     Решение


Задача 67121

Темы:   [ Поворотная гомотетия (прочее) ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 8,9,10,11

Автор: Яковлев Б.

Дан равнобедренный треугольник ABC, AB=AC, P – середина меньшей дуги AB окружности ABC, Q – середина отрезка AC. Окружность с центром в O, описанная около APQ, вторично пересекает AB в точке K. Докажите, что прямые PO и KQ пересекаются на биссектрисе угла ABC.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .