Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
Даны две концентрические окружности Ω и ω. Хорда AD окружности Ω касается ω. Внутри меньшего сегмента AD круга с границей Ω взята произвольная точка P. Касательные из P к окружности ω пересекают большую дугу AD окружности Ω в точках B и C. Отрезки BD и AC пересекаются в точке Q. Докажите, что отрезок PQ делит отрезок AD на две равные части.
|
|
Сложность: 5 Классы: 8,9,10,11
|
Пусть n > 1 – целое число. В одной из клеток бесконечной белой клетчатой доски стоит ладья. Каждым ходом она сдвигается по доске ровно на n клеток по вертикали или по горизонтали, закрашивая пройденные n клеток в чёрный цвет. Сделав несколько таких ходов, не проходя никакую клетку дважды, ладья вернулась в исходную клетку. Чёрные клетки образуют замкнутый контур. Докажите, что число белых клеток внутри этого контура даёт при делении на n остаток 1.
|
|
Сложность: 5 Классы: 8,9,10,11
|
На сторонах правильного девятиугольника ABCDEFGHI во внешнюю сторону построили треугольники XAB, YBC, ZCD и TDE. Известно, что углы X, Y, Z, T этих треугольников равны 20∘ каждый, а среди углов XAB, YBC, ZCD и TDE каждый следующий на 20∘ больше предыдущего. Докажите, что точки X, Y, Z, T лежат на одной окружности.

|
|
Сложность: 5 Классы: 8,9,10,11
|
Петя прибавил к натуральному числу N натуральное число M и заметил, что сумма цифр у результата та же, что и у N. Тогда он снова прибавил M к результату, потом – ещё раз, и т. д. Обязательно ли он когда-нибудь снова получит число с той же суммой цифр, что и у N?
|
|
Сложность: 5 Классы: 8,9,10,11
|
В бесконечной арифметической прогрессии, где все числа натуральные, нашлись два числа с одинаковой суммой цифр. Обязательно ли в ней найдётся ещё одно число с такой же суммой цифр?
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]