|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем отрезки AA1, BB1 и CC1 пересекаются в точке P. Пусть la, lb, lc — прямые, соединяющие середины отрезков BC и B1C1, CA и C1A1, AB и A1B1. Докажите, что прямые la, lb и lc пересекаются в одной точке, причем эта точка лежит на отрезке PM, где M — центр масс треугольника ABC. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]
Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете.
Решить уравнение x8 + 4x4 + x² + 1 = 0.
Найти все значения x и y, удовлетворяющие равенству xy + 1 = x + y.
Имеет ли отрицательные корни уравнение x4 – 4x³ – 6x² – 3x + 9 = 0?
Число p – корень кубического уравнения x³ + x – 3 = 0.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|