Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Из точки M на плоскость α опущен перпендикуляр MH длины и проведены две наклонные, составляющие с перпендикуляром углы по 60o . Угол между наклонными равен 120o . а) Найдите расстояние между основаниями A и B наклонных. б) На отрезке AB как на катете в плоскости α построен прямоугольный треугольник ABC (угол A – прямой). Найдите объём пирамиды MABC , зная, что cos BMC = - .

Вниз   Решение


В некоторой точке круглого острова радиусом 1 км зарыт клад. На берегу острова стоит математик с прибором, который указывает направление на клад, когда расстояние до клада не превосходит 500 м. Кроме того, у математика есть карта острова, на которой он может фиксировать все свои перемещения, выполнять измерения и геометрические построения. Математик утверждает, что у него есть алгоритм, как добраться до клада, пройдя меньше 4 км. Может ли это быть правдой?

ВверхВниз   Решение


На рисунке изображена фигура ABCD . Стороны AB , CD и AD этой фигуры– отрезки (причём AB||CD и AD CD ); BC – дуга окружности, причём любая касательная к этой дуге отсекает от фигуры трапецию или прямоугольник. Объясните, как провести касательную к дуге BC , чтобы отсекаемая фигура имела наибольшую площадь.

ВверхВниз   Решение


В параллелограмме ABCD, не являющемся ромбом, проведена биссектриса угла BAD. K и L – точки её пересечения с прямыми BC и CD соответственно. Докажите, что центр окружности, проведённой через точки C, K и L, лежит на окружности, проведённой через точки B, C и D.

Вверх   Решение

Задачи

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 385]      



Задача 115467

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 7,8,9,10

На дне рождения у Васи было 10 ребят (включая Васю). Оказалось, что у каждых двух из этих ребят есть общий дедушка.
Докажите, что у семи из них есть общий дедушка.

Прислать комментарий     Решение

Задача 30792

Темы:   [ Деревья ]
[ Степень вершины ]
Сложность: 4
Классы: 8,9

В некоторой стране 30 городов, причём каждый соединён с каждым дорогой.
Какое наибольшее число дорог можно закрыть на ремонт так, чтобы из каждого города можно было проехать в любой другой?

Прислать комментарий     Решение

Задача 30806

Темы:   [ Обход графов ]
[ Деревья ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9

Докажите, что связный граф, имеющий не более двух нечётных вершин, можно нарисовать, не отрывая карандаша от бумаги и проводя каждое ребро ровно один раз.

Прислать комментарий     Решение

Задача 30824

Темы:   [ Ориентированные графы ]
[ Обход графов ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9

На ребрах связного графа расставлены стрелки так, что для каждой вершины числа входящих и выходящих рёбер равны.
Докажите, что двигаясь по стрелкам, можно добраться от каждой вершины до любой другой.

Прислать комментарий     Решение

Задача 31091

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4
Классы: 6,7,8

В графе 20 вершин, степень каждой не меньше 10. Доказать, что в нём есть гамильтонов путь.

Прислать комментарий     Решение

Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 385]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .