ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Точка M равноудалена от трёх прямых AB , BC и AC . Докажите, что ортогональная проекция точки M на плоскость ABC является центром вписанной окружности либо одной из вневписанных окружностей треугольника ABC .

Вниз   Решение


В треугольнике ABC угол C равен 90o , AB = 13 , AC = 5 . Найдите tgA .

ВверхВниз   Решение


На клетки шахматной доски положили рисовые зёрнышки. Количества зёрнышек на каждых двух клетках, имеющих общую сторону, отличались ровно
на 1. При этом на одной из клеток доски лежало три зёрнышка, а на другой – 17 зёрнышек. Петух склевал все зёрнышки с одной из главных диагоналей доски, а курица – с другой. Сколько зёрен досталось петуху и сколько курице?

ВверхВниз   Решение


Точка D взята на медиане BM треугольника ABC. Через точку D проведена прямая, параллельная стороне AB, а через точку C – прямая, параллельная медиане BM. Две проведённые прямые пересекаются в точке E. Докажите, что  BE = AD.

Вверх   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 592]      



Задача 79518

Темы:   [ Классические неравенства (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 9,10,11

Доказать, что для любых чисел  a1, ..., a1987  и положительных чисел  b1,..., b1987  справедливо неравенство

+ ... + .

Прислать комментарий     Решение

Задача 109653

Темы:   [ Классические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Квадратный трехчлен (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Пусть P(x) – квадратный трёхчлен с неотрицательными коэффициентами.
Докажите, что для любых действительных чисел x и y справедливо неравенство  (P(xy))² ≤ P(x²)P(y²).

Прислать комментарий     Решение

Задача 109811

Темы:   [ Алгебраические неравенства (прочее) ]
[ Монотонность и ограниченность ]
Сложность: 4
Классы: 8,9,10

Даны натуральное число  n > 3  и положительные числа x1, x2, ..., xn, произведение которых равно 1.
Докажите неравенство  

Прислать комментарий     Решение

Задача 111800

Тема:   [ Квадратичные неравенства (несколько переменных) ]
Сложность: 4
Классы: 9,10,11

Автор: Исаев М.

Числа x1, x2, ..., xn таковы, что  x1x2 ≥ ... ≥ xn ≥ 0  и     Докажите, что  

Прислать комментарий     Решение

Задача 116543

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9

Даны положительные числа x, y, z. Докажите неравенство   

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 592]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .