ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах AB, BC и CA произвольного треугольника ABC взяты точки C1, A1 и B1 соответственно. Обозначим через S1, S2 и S3 площади треугольников AB1C1, BA1C1, CA1B1 соответственно. Докажите, что Артемон подарил Мальвине букет из аленьких цветочков и чёрных роз. У каждой чёрной розы 4 пестика и 4 тычинки, а на стебле два листка. У каждого аленького цветочка 8 пестиков и 10 тычинок, а на стебле три листка. Листков в букете на 108 меньше, чем пестиков. Сколько тычинок в букете? |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 401]
В треугольнике KLM проведена биссектриса MN. Через вершину M проходит окружность, касающаяся стороны KL в точке N и пересекающая сторону KM в точке P, а сторону LM — в точке Q. Отрезки KP, QM и LQ соответственно равны k, m и q .Найдите MN.
Пусть R — радиус описанной окружности треугольника ABC, ra — радиус вневписанной окружности этого треугольника, касающейся стороны BC. Докажите, что квадрат расстояния между центрами этих окружностей равен R2 + 2Rra.
Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.
Докажите, что равные хорды удалены от центра окружности на равные расстояния.
Продолжения равных хорд AB и CD окружности соответственно за
точки B и C пересекаются в точке P.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 401]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке