ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть уравнение x³ + px + q = 0 имеет корни x1, x2 и x3. Выразите через p и q дискриминант этого уравнения D = (x1 – x2)²(x² – x3)²(x3 – x1)². Последовательность натуральных чисел a1, a2, ..., an, ... такова, что для каждого n уравнение an+2x² + an+1x + an = 0 имеет действительный корень. Может ли число членов этой последовательности быть Пусть E, F, G, H – середины сторон AB, BC, CD, DA выпуклого четырёхугольника ABCD. Докажите, что SABCD ≤ EG·HF.
Найдите наибольшее и наименьшее значения функций
|
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 293]
В остроугольном треугольнике соединены основания высот. Оказалось, что в полученном треугольнике две стороны параллельны сторонам исходного треугольника. Докажите, что третья сторона также параллельна одной из сторон исходного треугольника.
Диагонали AC и BD равнобедренной трапеции ABCD пересекаются в точке O; известно также, что в трапецию можно вписать окружность.
Четырёхугольник ABCD вписан в окружность с центром O, ∠BOA = ∠COD = 60°. Перпендикуляр BK, опущенный
на сторону AD, равен 6; AD = 3BC.
Четырёхугольник ABCD вписан в окружность с центром в точке O, AO ⊥ OB, OC ⊥ OD. Перпендикуляр, опущенный из вершины C на прямую AD, равен 9,
Длины двух параллельных хорд окружности равны 40 и 48, расстояние между ними равно 22. Найдите радиус окружности.
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 293]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке