ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – степень числа 10.

Вниз   Решение


Можно ли расставить по кругу числа 1, 2, ..., 60 в таком порядке, чтобы сумма каждых двух чисел, между которыми находится одно число, делилась на 2, сумма каждых двух чисел, между которыми находятся два числа, делилась на 3, сумма каждых двух чисел, между которыми находятся шесть чисел, делилась на 7?

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 201]      



Задача 60480

Темы:   [ Простые числа и их свойства ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что числа Ферма  fn = 22n + 1  при  n > 1  не представимы в виде суммы двух простых чисел.

Прислать комментарий     Решение

Задача 60482

Темы:   [ Простые числа и их свойства ]
[ Целочисленные и целозначные многочлены ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3+
Классы: 8,9,10

Пусть P(x) – многочлен ненулевой степени с целыми коэффициентами. Могут ли все числа P(0), P(1), P(2), ... быть простыми?

Прислать комментарий     Решение

Задача 60509

Темы:   [ Простые числа и их свойства ]
[ Индукция (прочее) ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 8,9,10

Докажите, что  pn+1 ≤ 22n + 1,  где pnn-е простое число.

Прислать комментарий     Решение

Задача 60654

Темы:   [ Простые числа и их свойства ]
[ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что для любого простого числа  p > 2  числитель дроби  m/n = 1/1 + 1/2 + ... + 1/p–1  делится на p.

Прислать комментарий     Решение

Задача 60753

Темы:   [ Простые числа и их свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10

При помощи задачи 60752 докажите, что существует бесконечно много простых чисел вида  p = 4k + 1.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .