ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В параллелограмме ABCD угол C — острый, сторона AB
равна 3, сторона BC равна 6. Из вершины C опущен
перпендикуляр CE на продолжение стороны AB. Точка E, основание
перпендикуляра CE, соединена отрезком прямой с точкой F,
серединой стороны AD. Известно, что угол AEF равен
Площадь сечения конуса плоскостью, проходящей через вершину конуса под углом 30o к его оси, равна площади осевого сечения. Найдите угол при вершине осевого сечения конуса.
В равнобедренном треугольнике высоты, опущенные на основание и боковую сторону, равны соответственно m и n. Найдите стороны треугольника.
В угол с вершиной $C$ вписана окружность $\omega$. Рассматриваются окружности, проходящие через $C$, касающиеся $\omega$ внешним образом и пересекающие стороны угла в точках $A$ и $B$. Докажите, что периметры всех треугольников $ABC$ равны. |
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1224]
Колода из 36 карт сложена так, что через четыре карты масть повторяется. Несколько карт сверху сняли, не перекладывая перевернули и вставили произвольным образом (не обязательно подряд) между оставшимися. После этого колоду разделили на 9 стопок по 4 идущие подряд карты. Докажите, что в каждой из этих стопок встретится по одной карте каждой масти.
Можно ли расставить во всех точках плоскости с целыми координатами натуральные числа так, чтобы каждое натуральное число стояло в какой-нибудь точке, и чтобы на каждой прямой, проходящей через две точки с целыми координатами, но не проходящей через начало координат, расстановка чисел была периодической?
ABCDEF – число из шести цифр. Все они разные и расположены слева направо в возрастающем порядке. Число это – полный квадрат.
Даны 10 чисел – одна единица и 9 нулей. Разрешается выбирать два числа и заменять каждое из них их средним арифметическим.
В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места?
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1224]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке