ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи A – вершина правильного звёздчатого пятиугольника. Ломаная AA'BB'CC'DD'EE' является его внешним контуром. Прямые AB и DE продолжены до пересечения в точке F. Докажите, что многоугольник ABB'CC'DED' равновелик четырёхугольнику AD'EF. |
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 487]
С помощью циркуля и линейки постройте треугольник по углу, биссектрисе, проведённой из вершины этого угла, и радиусу вписанной окружности.
С помощью циркуля и линейки проведите через данную точку прямую, пересекающую две стороны данного треугольника так, чтобы точки пересечения и концы третьей стороны находились на одной окружности.
С помощью циркуля и линейки постройте окружность, касающуюся двух данных концентрических окружностей и данной прямой.
С помощью циркуля и линейки постройте окружность с данным центром, касающуюся данной окружности.
Постройте треугольник ABC, зная положение центров A1, B1 и C1 его вневписанных окружностей.
Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 487]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке