ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
В треугольнике KMN проведены высота NA, биссектриса NB и медиана NC, которые делят угол KNM на четыре равные части. Найдите длины высоты NA, биссектрисы NB и медианы NC, если радиус описанной около треугольника KMN окружности равен R.
У каждого целого числа от n + 1 до 2n включительно (n – натуральное) возьмём наибольший нечётный делитель и сложим все эти делители. Дан квадрат, две вершины которого лежат на окружности радиуса R, а две другие – на касательной к этой окружности. Найдите диагонали квадрата. Ключом шифра, называемого "поворотная решетка", является трафарет, изготовленный из квадратного листа клетчатой бумаги размера n×n |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]
Существует ли правильный треугольник с вершинами в узлах целочисленной
решетки?
Вершины выпуклого многоугольника расположены в узлах целочисленной решётки,
причём ни одна из его сторон не проходит по линиям решётки. Докажите, что сумма
длин горизонтальных отрезков линий решётки, заключённых внутри многоугольника,
равна сумме длин вертикальных отрезков.
Дан лист клетчатой бумаги. Докажите, что при n ≠ 4 не существует правильного n-угольника с вершинами в узлах решетки.
На координатной плоскости дан выпуклый пятиугольник
ABCDE с вершинами в целых точках. Докажите, что внутри или на границе
пятиугольника A1B1C1D1E1 (см. рис.) есть хотя бы одна целая точка.
Докажите, что при n ≠ 4 правильный n-угольник
нельзя расположить так, чтобы его вершины оказались
в узлах целочисленной решетки.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке