ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Три окружности с центрами A, B и C, касающиеся друг друга и прямой l, расположены так, как показано на рисунке. Пусть a, b и c – радиусы окружностей с центрами A, B и C соответственно. Докажите, что
Постройте треугольник ABC, зная три точки A1, B1, C1, в которых биссектрисы его углов пересекают описанную окружность.
Даны две прямые, пересекающиеся в точке O. Найдите
ГМТ X, для которых сумма длин проекций отрезков OX на эти прямые
постоянна.
|
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 449]
Две стороны треугольника равны 2
В треугольнике ABC BC = 4, AB = 2
В треугольнике ABC на стороне AC как на диаметре описана окружность, которая пересекает сторону AB в точке M, а сторону BC в точке N. Известно, что AC = 2, AB = 3, AN = 1, 8. Найдите косинус угла BAC.
Докажите, что сумма квадратов расстояний от точки, лежащей на окружности, до вершин правильного вписанного в эту окружность треугольника есть величина постоянная, не зависящая от положения точки на окружности.
В треугольнике ABC биссектриса AK перпендикулярна медиане
BM, а ∠B = 120°.
Страница: << 40 41 42 43 44 45 46 >> [Всего задач: 449]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке