ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник ABC. На продолжении стороны AC за точку C
взята точка N, причём CN = 2/3 AC. Точка K находится на стороне AB, причём AK : KB = 3 : 2. При каких a и b уравнение x3 + ax + b = 0 имеет три различных решения, составляющих арифметическую прогрессию? |
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1224]
Колода из 36 карт сложена так, что через четыре карты масть повторяется. Несколько карт сверху сняли, не перекладывая перевернули и вставили произвольным образом (не обязательно подряд) между оставшимися. После этого колоду разделили на 9 стопок по 4 идущие подряд карты. Докажите, что в каждой из этих стопок встретится по одной карте каждой масти.
Можно ли расставить во всех точках плоскости с целыми координатами натуральные числа так, чтобы каждое натуральное число стояло в какой-нибудь точке, и чтобы на каждой прямой, проходящей через две точки с целыми координатами, но не проходящей через начало координат, расстановка чисел была периодической?
ABCDEF – число из шести цифр. Все они разные и расположены слева направо в возрастающем порядке. Число это – полный квадрат.
Даны 10 чисел – одна единица и 9 нулей. Разрешается выбирать два числа и заменять каждое из них их средним арифметическим.
В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места?
Страница: << 114 115 116 117 118 119 120 >> [Всего задач: 1224]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке