ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Трое играют в настольный теннис, причем игрок, проигравший партию, уступает место игроку, не участвовавшему в ней. В итоге оказалось, что первый игрок сыграл 10 партий, второй – 21. Сколько партий сыграл третий игрок?

Вниз   Решение


Докажите, что сумма квадратов длин проекций сторон правильного n-угольника на любую прямую равна  ½ na²,  где a – сторона n-угольника.

ВверхВниз   Решение


Пусть A , B , C и D – четыре точки, не лежащие в одной плоскости. Через точку пересечения медиан треугольника ABC проведена плоскость, параллельная прямым AB и CD . В каком отношении эта плоскость делит медиану, проведённую к стороне CD треугольника ACD ?

Вверх   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1359]      



Задача 53631

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Птолемея ]
Сложность: 3+
Классы: 8,9

Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника.
Найдите расстояние между вершиной прямого угла треугольника и центром квадрата, если катеты треугольника равны a и b.

Прислать комментарий     Решение

Задача 53637

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике высота, проведённая к основанию, делится точкой пересечения высот пополам. Найдите углы этого треугольника.

Прислать комментарий     Решение

Задача 53675

Тема:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Высота треугольника ABC, опущенная на сторону BC, равна h, $ \angle$B = $ \beta$, $ \angle$C = $ \gamma$. Найдите остальные высоты этого треугольника.

Прислать комментарий     Решение


Задача 53827

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки подобия ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC перпендикуляр, проходящий через середину стороны AB, пересекает продолжение стороны BC в точке M, причём  MC : MB = 1 : 5.  Перпендикуляр, проходящий через середину стороны BC, пересекает сторону AC в точке N, причём  AN : NC = 1 : 2 . Найдите углы треугольника ABC.

Прислать комментарий     Решение

Задача 53828

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки подобия ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC перпендикуляр, проходящий через середину стороны AB, пересекает сторону AC в точке M, причём  MA/MC = 3.  Перпендикуляр, проходящий через середину стороны AC, пересекает сторону AB в точке N, причём  AN/BN = 2.  Найдите углы треугольника ABC.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1359]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .