Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Отличник Поликарп составлял максимальное пятизначное число, которое состоит из различных нечётных цифр. Двоечник Колька составлял минимальное пятизначное число, которое состоит из различных чётных цифр. Какие числа должны были составить Поликарп и Колька?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 103917

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Принцип Дирихле (углы и длины) ]
[ Неравенства для углов треугольника ]
Сложность: 4-
Классы: 8,9

Дано, что ни для какой стороны треугольника из проведённых к ней высоты, биссектрисы и медианы нельзя составить треугольник.
Доказать, что один из углов треугольника больше чем 135°.

Прислать комментарий     Решение

Задача 64467

Темы:   [ Построения одной линейкой ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Отношение, в котором биссектриса делит сторону ]
[ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4+
Классы: 8,9,10,11

На каждой стороне треугольника ABC отмечены две различные точки. Известно, что это основания высот и биссектрис.

  а) Пользуясь только линейкой без делений, определите, где высоты, а где биссектрисы.

  б) Решите пункт а), проведя только три прямых.

Прислать комментарий     Решение

Задача 116913

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Точка Нагеля. Прямая Нагеля ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Формулы для площади треугольника ]
[ Момент инерции ]
Сложность: 5-
Классы: 9,10

Пусть M и I – точки пересечения медиан и биссектрис неравнобедренного треугольника ABC, а r – радиус вписанной в него окружности.
Докажите, что  MI = r/3  тогда и только тогда, когда прямая MI перпендикулярна одной из сторон треугольника.

Прислать комментарий     Решение

Задача 53115

Темы:   [ Вспомогательная окружность ]
[ Биссектриса делит дугу пополам ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 3+
Классы: 8,9

Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведёнными из той же вершины.

Прислать комментарий     Решение

Задача 108091

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Правильный (равносторонний) треугольник ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 7,8,9

В треугольнике ABC проведены биссектриса AK, медиана BL и высота CM. Треугольник KLM – равносторонний.
Докажите, что треугольник ABC – равносторонний.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .