ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Сколькими способами можно построить замкнутую ломаную, вершинами которой являются вершины правильного шестиугольника (ломаная может быть самопересекающейся)?

Вниз   Решение


На кольцевой дороге расположены четыре бензоколонки: A, B, C и D. Расстояние между A и B — 50 км, между A и C — 40 км, между C и D — 25 км, между D и A — 35 км (все расстояния измеряются вдоль кольцевой дороги в кратчайшую сторону).

а) Приведите пример расположения бензоколонок (с указанием расстояний между ними), удовлетворяющий условию задачи.

б) Найдите расстояние между B и C (укажите все возможности).

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 57309

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 2
Классы: 8

a, b и c - длины сторон произвольного треугольника. Докажите, что  a = y + z, b = x + z и c = x + y, где x, y и z — положительные числа.
Прислать комментарий     Решение


Задача 57310

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 2
Классы: 8

a, b и c - длины сторон произвольного треугольника. Докажите, что  a2 + b2 + c2 < 2(ab + bc + ca).
Прислать комментарий     Решение


Задача 35496

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 8,9

Даны 100 палочек. Верно ли, что из них можно выбрать несколько палочек, из которых можно сложить многоугольник?
Прислать комментарий     Решение


Задача 55176

Тема:   [ Алгебраические задачи на неравенство треугольника ]
Сложность: 3
Классы: 8,9

В треугольнике две стороны равны 3,14 и 0,67. Найдите третью сторону, если известно, что её длина является целым числом.

Прислать комментарий     Решение


Задача 35482

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Геометрическая прогрессия ]
Сложность: 3
Классы: 8,9,10

Докажите, что в любом многоугольнике найдутся две стороны, отношение которых заключено между числами 1/2 и 2.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .