ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

K и M — точки пересечения двух окружностей. Из точки K проведены два луча, один из которых пересекает первую окружность в точке A , а вторую в точке B ; другой пересекает первую окружность в точке C , вторую в точке D . Докажите, что углы MAB и MCD равны.

Вниз   Решение


12 шахматистов сыграли турнир в один круг. Потом каждый из них написал 12 списков. В первом только он, в (k+1)-м – те, кто были в k-м и те, у кого они выиграли. Оказалось, что у каждого шахматиста 12-й список отличается от 11-го. Сколько было ничьих?

ВверхВниз   Решение


Дан треугольник $ABC$ и окружность $\gamma$ с центром в точке $A$, которая пересекает стороны $AB$ и $AC$. Пусть общая хорда описанной окружности треугольника и окружности $\gamma$ пересекает стороны $AB$ и $AC$ в точках $X$ и $Y$ соответственно. Отрезки $CX$ и $BY$ пересекают $\gamma$ в точках $S$ и $T$ соответственно. Описанные окружности треугольников $ACT$ и $BAS$ пересекаются в точках $A$ и $P$. Докажите, что прямые $CX$, $BY$, и $AP$ пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 56892

Темы:   [ Треугольники (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9

На сторонах треугольника ABC взяты точки A1, B1 и C1 так, что  AB1 : B1C = cn : an,  BC1 : C1A = an : bn  и  CA1 : A1B = bn : cn  (a, b, c – длины сторон треугольника). Описанная окружность треугольника A1B1C1 высекает на сторонах треугольника ABC отрезки длиной ±x, ±y и ±z (знаки выбираются в соответствии с ориентацией треугольника). Докажите, что  

Прислать комментарий     Решение

Задача 78135

Темы:   [ Треугольники (прочее) ]
[ Векторы (прочее) ]
[ Симметрия помогает решить задачу ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 9,10

Внутри треугольника ABC взята точка O. На лучах OA, OB и OC построены векторы единичной длины.
Доказать, что сумма этих векторов имеет длину, меньшую единицы.

Прислать комментарий     Решение

Задача 66533

Тема:   [ Треугольники (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Внутри равнобедренного треугольника ABC отмечена точка K так, что AB = BC = CK и ∠KAC = 30°. Найдите угол AKB.
Прислать комментарий     Решение


Задача 66559

Тема:   [ Треугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Соколов А.

В остроугольном треугольнике $ABC$ ($AB$<$BC$) провели высоту $BH$. Точка $P$ симметрична точке $H$ относительно прямой, соединяющей середины сторон $AC$ и $BC$. Докажите, что прямая $BP$ содержит центр описанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Задача 66577

Темы:   [ Треугольники (прочее) ]
[ Планиметрия (прочее) ]
Сложность: 4
Классы: 9,10,11

На стороне $AC$ треугольника $ABC$ взяли такую точку $D$, что угол $BDC$ равен углу $ABC$. Чему равно наименьшее возможное расстояние между центрами окружностей, описанных около треугольников $ABC$ и $ABD$, если $BC = 1$?
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .